Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,4-Dibromo-6-(4-bromophenyliminomethyl)phenol

Ming-Lin Guo and Li Zhang*

School of Materials and Chemical Engineering and Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic University,
Tianjin 300160, People's Republic of China
Correspondence e-mail: guomlin@yahoo.com
Received 28 October 2007; accepted 30 October 2007
Key indicators: single-crystal X-ray study; $T=294 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.014 \AA$; R factor $=0.066 ; w R$ factor $=0.199$; data-to-parameter ratio $=14.2$.

In the title compound, $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Br}_{3} \mathrm{NO}$, the two aromatic substituents lie trans to each other across the $\mathrm{C}=\mathrm{N}$ bond. The molecule is almost planar, with a dihedral angle of $3.6(5)^{\circ}$ between the aromatic rings. Intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding generates an $S(6)$ ring motif, while short intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{Br} \cdots \mathrm{Br}$ contacts [$\mathrm{Br} \cdots \mathrm{Br}$ distance 3.669 (2) A] link the molecules into a twodimensional network.

Related literature

For the background to Schiff base chemistry, see: Yeap et al. (2003) and for related structures, see: Zheng et al. (2005); Özek et al. (2007); Guo (2007).

Experimental

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Br}_{3} \mathrm{NO}$
$M_{r}=433.90$
Triclinic, $P \overline{1}$
$a=7.985$ (3) A
$b=8.594$ (3) \AA
$c=11.020$ (4) \AA
$\alpha=87.801$ (6) ${ }^{\circ}$
$\beta=76.688(7)^{\circ}$
$\gamma=65.180(5)^{\circ}$
$V=666.5$ (4) \AA^{3}
$Z=2$
Mo $K \alpha$ radiation
$\mu=9.07 \mathrm{~mm}^{-1}$
$T=294$ (2) K
$0.24 \times 0.16 \times 0.12 \mathrm{~mm}$

Data collection
Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.202, T_{\text {max }}=0.339$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066 \quad 163$ parameters
$w R\left(F^{2}\right)=0.199 \quad$ H-atom parameters constrained
$S=0.98$
2309 reflections

3322 measured reflections 2309 independent reflections 1471 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.065$

Table 1
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1$	0.82	1.93	$2.574(10)$	135
C10-H10 O^{i}	0.93	2.61	$3.341(13)$	136
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{Br}^{\mathrm{i}}$	0.93	2.99	$3.866(10)$	157

Symmetry code: (i) $-x+1,-y,-z+1$.
Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank Tianjin Polytechnic University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2397).

References

Bruker (1997). SMART (Version 5.051) and SAINT (Version 5.06A). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Guo, M.-L. (2007). Acta Cryst. E63, o1788-o1789.
Ozek, A., Albayrak, Ç., Odabaşoğlu, M. \& Büyükgüngör, O. (2007). Acta Cryst. C63, o177-o180.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Yeap, G. Y., Ha, S. T., Ishizawa, N., Suda, K., Boey, P. L. \& Mahmood, W. A. K. (2003). J. Mol. Struct. 658, 87-89.

Zheng, C.-S., Yang, N., Li, M. \& Jing, Z.-L. (2005). Acta Cryst. E61, o3613o3614.

supplementary materials

2,4-Dibromo-6-(4-bromophenyliminomethyl)phenol

M.-L. Guo and L. Zhang

Comment

Schiff bases are important in diverse fields of chemistry and biochemistry owing to their biological activity, photochromism and related properties (Yeap et al., 2003). In view of the importance and also the usefulness of these compounds, chemists are prompted to generate the new derivatives by introducing different substituents into the existing skeleton of the molecule (Zheng et al., 2005;Özek et al., 2007; Guo, 2007). Here, we report the structure of the title compound, (I), Fig. 1, a new Schiff base, which was prepared by reaction of 3,5-dibromo-2-hydroxybenzaldehyde with 4-bromobenzenamine. The planarity of the molecule is supported by the conjugation of the imino group and the aromatic system, together with a resonance-assisted intramolecular $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1$ hydrogen bond (Table 1). The dihedral angle between the aromatic rings is $3.6(5)^{\circ}$.

In addition to the intramolecular hydrogen bond, some short intermolecular contacts, $\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O}^{\mathrm{i}}$ (see Table 1 for symmetry codes), $\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{Br} 1^{\mathrm{i}}$ and $\mathrm{Br} 3 \cdots \mathrm{Br} 2^{\mathrm{ii}}(d[\mathrm{Br} 2-\mathrm{Br} 3]=3.669$ (2) \AA, symmetry code: (ii) $1+x,-1+y, 1+z$, were observed in the crystal structure. These link the molecules into a two-dimensional network, Fig. 2.

Experimental

The title compound, (I), was prepared by reaction of 3,5-dibromo-2-hydroxybenzaldehyde ($1.4 \mathrm{~g}, 5 \mathrm{mmol}$) with 4-bromobenzenamine $(0.95 \mathrm{~g} 5.5 \mathrm{~mol})$ in 30 ml of 95% ethanol. The mixture was stirred and heated in air at reflux temperature for 30 min , after which 40 ml distilled water was added, the resulting product was separated by filtration (1.8 g , yield 83.1\%). The pure product $(0.5 \mathrm{~g})$ was heated and dissolved in 15 ml of 95% ethanol. Single crystals were obtained from this solution by slow evaporation over a period of 2 days at room temperature.

Refinement

The H atom involved in the $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond was found in a difference Fourier map, but was fixed during refinement with $\mathrm{d}(\mathrm{O}-\mathrm{H})=0.82 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O}) . \mathrm{H}$ atoms bound to C atoms were included in the refinement in the riding model approximation, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}$ atom $)$.

Figures

Fig. 1. A view of the structure of (I), showing the atom-numbering Scheme and the
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1$ hydrogen bond (dashed line); displacement ellipsoids were drawn at the 30% probability level.

Fig. 2. Packing diagram of (I) viewed down the c axis, showing hydrogen bonds and short intermolecular contacts as dashed lines.

supplementary materials

2,4-Dibromo-6-(4-bromophenyliminomethyl)phenol

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Br}_{3} \mathrm{NO}$
$M_{r}=433.90$
Triclinic, $P \mathrm{I}$
Hall symbol: -P 1
$a=7.985$ (3) \AA
$b=8.594$ (3) \AA
$c=11.020(4) \AA$
$\alpha=87.801$ (6) ${ }^{\circ}$
$\beta=76.688(7)^{\circ}$
$\gamma=65.180(5)^{\circ}$
$V=666.5(4) \AA^{3}$
$Z=2$
$F_{000}=412$
$D_{\mathrm{x}}=2.162 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 1206 reflections
$\theta=2.9-26.2^{\circ}$
$\mu=9.07 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Prism, red
$0.24 \times 0.16 \times 0.12 \mathrm{~mm}$

2309 independent reflections
1471 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.065$
$\theta_{\text {max }}=25.0^{\circ}$
$\theta_{\text {min }}=1.9^{\circ}$
$h=-7 \rightarrow 9$
$k=-6 \rightarrow 10$
$l=-12 \rightarrow 13$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1123 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=<0.001$
$\Delta \rho_{\max }=0.86$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-1.27$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Br1	$0.12496(17)$	$0.33749(14)$	$0.12113(9)$	$0.0560(4)$
Br2	$0.69858(18)$	$0.14000(16)$	$0.98515(10)$	$0.0616(5)$
Br3	$-0.19458(18)$	$1.03572(14)$	$0.29251(11)$	$0.0597(5)$
O1	$0.2910(9)$	$0.2930(9)$	$0.3421(6)$	$0.0451(18)$
H1	0.2990	0.2748	0.4146	0.054^{*}
N1	$0.3470(10)$	$0.3870(10)$	$0.5425(7)$	$0.0350(19)$
C1	$0.1501(12)$	$0.5864(12)$	$0.4244(8)$	$0.032(2)$
C2	$0.1817(12)$	$0.4586(11)$	$0.3349(8)$	$0.030(2)$
C3	$0.0952(13)$	$0.5088(13)$	$0.2346(8)$	$0.035(2)$
C4	$-0.0163(12)$	$0.6781(11)$	$0.2222(8)$	$0.030(2)$
H4	-0.0730	0.7103	0.1549	0.036^{*}
C5	$-0.0428(12)$	$0.8008(12)$	$0.3121(9)$	$0.034(2)$
C6	$0.0394(13)$	$0.7551(12)$	$0.4103(8)$	$0.035(2)$
H6	0.0203	0.8394	0.4690	0.042^{*}
C7	$0.2360(13)$	$0.5403(13)$	$0.5293(9)$	$0.037(2)$
H7	0.2093	0.6258	0.5894	0.044^{*}
C8	$0.4295(12)$	$0.3389(12)$	$0.6481(8)$	$0.032(2)$
C9	$0.5304(14)$	$0.1652(12)$	$0.6570(9)$	$0.041(2)$
H9	0.5436	0.0877	0.5950	0.049^{*}
C10	$0.6116(15)$	$0.1055(14)$	$0.7560(10)$	$0.049(3)$
H10	0.6817	-0.0116	0.7603	0.059^{*}
C11	$0.5887(13)$	$0.2199(13)$	$0.8488(9)$	$0.042(3)$
C12	$0.4891(15)$	$0.3947(14)$	$0.8395(9)$	$0.048(3)$
H12	0.4767	0.4728	0.9009	0.057^{*}
C13	$0.4093(13)$	$0.4518(12)$	$0.7400(8)$	$0.037(2)$
H13	0.3405	0.5690	0.7348	0.044^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.0849(8)$	$0.0393(7)$	$0.0331(6)$	$-0.0047(5)$	$-0.0351(6)$	$-0.0061(5)$
Br2	$0.0917(9)$	$0.0532(8)$	$0.0349(7)$	$-0.0119(6)$	$-0.0432(6)$	$0.0077(5)$

Br3	$0.0896(9)$	$0.0281(7)$	$0.0566(8)$	$-0.0077(6)$	$-0.0431(6)$	$0.0098(5)$
O1	$0.061(4)$	$0.039(4)$	$0.023(4)$	$-0.001(3)$	$-0.026(3)$	$0.003(3)$
N1	$0.044(4)$	$0.033(5)$	$0.028(4)$	$-0.011(4)$	$-0.022(3)$	$0.006(4)$
C1	$0.044(5)$	$0.034(5)$	$0.018(5)$	$-0.014(4)$	$-0.015(4)$	$0.007(4)$
C2	$0.039(5)$	$0.024(5)$	$0.017(4)$	$-0.001(4)$	$-0.011(4)$	$0.000(4)$
C3	$0.047(5)$	$0.047(7)$	$0.017(5)$	$-0.020(5)$	$-0.016(4)$	$0.005(4)$
C4	$0.045(5)$	$0.030(5)$	$0.014(4)$	$-0.010(4)$	$-0.017(4)$	$0.006(4)$
C5	$0.044(5)$	$0.026(5)$	$0.039(6)$	$-0.015(4)$	$-0.020(4)$	$0.016(4)$
C6	$0.060(6)$	$0.027(6)$	$0.025(5)$	$-0.018(5)$	$-0.022(4)$	$0.005(4)$
C7	$0.053(6)$	$0.035(6)$	$0.032(5)$	$-0.020(5)$	$-0.024(4)$	$0.003(4)$
C8	$0.037(5)$	$0.045(6)$	$0.014(4)$	$-0.014(4)$	$-0.014(4)$	$0.007(4)$
C9	$0.062(6)$	$0.029(6)$	$0.036(6)$	$-0.015(5)$	$-0.030(5)$	$0.001(4)$
C10	$0.067(7)$	$0.031(6)$	$0.046(6)$	$-0.006(5)$	$-0.037(5)$	$0.002(5)$
C11	$0.050(6)$	$0.043(6)$	$0.026(5)$	$-0.007(5)$	$-0.021(4)$	$0.005(4)$
C12	$0.077(7)$	$0.041(7)$	$0.032(6)$	$-0.022(6)$	$-0.034(5)$	$0.013(5)$
C13	$0.053(5)$	$0.021(5)$	$0.028(5)$	$-0.004(4)$	$-0.017(4)$	$-0.003(4)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Br} 1-\mathrm{C} 3$	$1.870(10)$
$\mathrm{Br} 2-\mathrm{C} 11$	$1.876(9)$
$\mathrm{Br} 3-\mathrm{C} 5$	$1.904(9)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.332(11)$
$\mathrm{O} 1-\mathrm{H} 1$	0.8200
$\mathrm{~N} 1-\mathrm{C} 7$	$1.268(12)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.431(10)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.370(13)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.406(13)$
$\mathrm{C} 1-\mathrm{C} 7$	$1.437(12)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.397(12)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.372(13)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.390(13)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{H} 1$	109.4
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$122.6(8)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$119.8(8)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7$	$120.1(9)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$120.1(8)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$119.2(8)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$122.6(8)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$118.2(8)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$121.3(8)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Br} 1$	$120.5(6)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 1$	$118.2(7)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.7(8)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	120.6
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	120.6
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$121.0(8)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{Br} 3$	$120.6(8)$

sup-4

supplementary materials

$\mathrm{C} 4-\mathrm{C} 5-\mathrm{Br} 3$	$118.4(6)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$120.9(9)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	119.5
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	119.5
$\mathrm{~N} 1-\mathrm{C} 7-\mathrm{C} 1$	$122.2(9)$

Hydrogen-bond geometry ($A,^{\circ}$)
$D — \mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1$
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{Ol}^{\mathrm{i}}$
C10—H10 \cdots Br $1^{\text {i }}$
Symmetry codes: (i) $-x+1,-y,-z+1$.

$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$	120.1
$\mathrm{C} 8-\mathrm{C} 13-\mathrm{C} 12$	$120.8(9)$
$\mathrm{C} 8-\mathrm{C} 13-\mathrm{H} 13$	119.6
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13$	119.6

$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
0.82	1.93	$2.574(10)$	135
0.93	2.61	$3.341(13)$	136
0.93	2.99	$3.866(10)$	157

sup-5
supplementary materials

Fig. 1

Fig. 2

